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Curvature effects in rapid alloy solidification
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The growth of a cylindrical or spherical crystal into its undercooled melt is a process whose description is
complicated by the lack of a stationary regime. A simple approach to the problem, justified for low growth
rates and widely used in the past for both pure substances and alloy solidification, is based on a quasistatic
approximation which assumes an instantaneous adaptation of the diffusional field to the interface configuration.
For alloy solidification, assuming isothermal conditions and local interface equilibrium, this simplified model
predicts a diffusion controlled growth, with the radius of the crystal increasing asymptoticakyasHow-
ever, as pointed out by recent investigations, thermal diffusion and nonequilibrium effects enter as essential
ingredients in rapid alloy solidification. In the present paper we use the phase-field model to simulate the
cylindrical and spherical growth of a solid germ into a supersaturated alloy melt. The problem is treated in its
full time-dependent characteristics, accounting for nonequilibrium effects as well as for the rejection of both
heat and solute away from the advancing front. We observe a complex behavior and a rich variety of dynamic
regimes: in different regions of parameter space the growth rate is limited by diff(sither thermal or
chemica) or is kinetic controlled. Traversing the boundaries which limit these regions, the process undergoes
sharp transitions which leave a trace in the solidified alloy. For realistic values of the Lewis number, thermal
effects drive the process mta a diffusive regime, in which the rate limiting mechanism is the rejection of
solute.
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[. INTRODUCTION ¢(x,t) characterizes the phase of the system at each point; a
free-energy(or entropy functional, depending o, T, and
In rapid solidification of binary alloys the growth rate is c, as well as on their gradients, is then extremized in respect
controlled by the diffusive transport of both heat and soluteto these variables, to derive the dynamic equations for the
away from the advancing front. A classidaharp interface  process. Several theoretical and numerical stuffesl?|
description of the process couples the diffusion equations ipointed out that the PFM describes, in a natural fashion,
the bulk phases with interfacial boundary conditions. Thenonequilibrium effects like solute trapping and the kinetic
latter consist of two different constraint®) energy and sol- undercooling of the solid-liquid interface.
ute conservation across the moving front, &odconstitutive Employing these models, alloy solidification has been
laws which relate the concentratianand temperaturd at  studied in different regimes, generally neglecting the diffu-
the interface to the front velocity. As the relaxation of the sion of the thermal field. Much attention has been devoted to
thermal field is much faster than the rearrangement of chemthe dynamics and instabilities of a planar interface growing
cal species, the process is often treated as isothermal. In thésther in an adverse temperature gradient or into a supersatu-
limit Langer [1] pointed out that, assuming local interfacial rated melt(see Refs[13—15 for a review. In the latter case
equilibrium, and considering the chemical potential ratheiit is always possible, choosing proper conditions at infinity,
than the concentration field, the model for alloy solidificationto find a stationary regime in which the solid grows at a
is reduced to the same set of governing equations whicbonstant velocity.
describe the solidification of a pure substance. However, at A different picture arises when cylindricébr spherical
large growth rates nonequilibrium effects become dominantgrowth is considered, as in this case the process cannot be
the solid-liquid front requires a large undercooling to ad-stationary. The evolution of the interface dynamics, in the
vance, and the partition coefficiekt(i.e., the ratiocs/c, of  isothermal limit, can be addressed within the quasistatic ap-
solute concentration in the growing solid to that in the liquid proximation: the time-dependent diffusion equation is re-
at the interfackincreases from the equilibrium vallg to-  placed by the Laplace’s equation which satisfies all the
ward unity, reflecting the trapping of solute into the solid boundary conditions except the solute conservation at the
phase. These phenomena were addressed in several studiesving front; the latter is then utilized to determine the in-
by Aziz and co-workers[2—4] through the continuous terface velocity. Assuming local interfacial equilibrium, the
growth model. Starting from a mesoscopic analysis of thesolution of this simplified model shows that the growth is
diffusive processes within the interfacial boundary layer,limited by solute diffusiorj16]; as the radiuR of the crystal
they were able to derive a dynamic phase diagram, showinipcreasegand curvature effects become negligjble well
that the interface temperature is a nonmonotonic function oknown Rxt'2 power law is asymptotically approached. The
the growth rate. stability of the spherical solution against small deformations
A diffuse interface approach to study alloy solidification of the solid germ was treated by Mullins and Sekerka; in
is based on the phase-field mod&FM). A phase field their seminal papdrl7] they found that the spherical nucleus
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begins to deform when its radius exceeds a critical valudront velocity decays with time, asymptotically approaching
which is just seven times the nucleation radius. the voct~ Y2 power law.

The quasistatic approximation, which assumes an instan- The paper is organized as follows: in Sec. Il the govern-
taneous adaptation of the diffusive field to the actual intering equations of the model will be derived, through the ex-
face configuration, is justified only at low growth rates. At tremization of an entropy functional. In Sec. Il the numeri-
large values of the dimensionless supersaturaien(c; cal method will be explained, and in Sec. IV the results of
—c..)/(c —c¥) (wherec., represents the initial solute con- the numerical simulations will be discussed. The conclusions

centration of the melt and} andc* are the equilibrium  Will follow in Sec. V.

solute concentrations in the liquid and solid phases, respec-

tively), the problem should be treated in its full time- [l. GOVERNING EQUATIONS
dependent characteristics and taking into account nonequilib-

! . S . The model follows the formulation given by Warren and
rium effec_ts. Moreover recent |nvest|ga_t|or_15 po'nted QUt thaboettinger[Zl] and also incorporates many of the ideas de-
thermal diffusion enters as an essential ingredient into the

evolution of the phase-change procf8—20). veloped by Caginalp and Xig5], Caginalp and Jong$],

In the present paper the cylindrical or spherical growth Ofand Wheeleret al. [7,8]. Full details of the derivation are

a solid germ is simulated with the phase-field model. Theoresented eIsewhe[éZ], and will not repeated here.

X : . : . The entropy of an ideal solution of componertgsol-
study is conducted in one dimension, so that the morpholog|\-/ent) andB (solutd is written as
cal instabilities of the solid-liquid interface are beyond the

scope of our analysis. We focus on the dynamics of the pro- 2
|

€
cess at large supersaturation accounting, for both thermal and s(e,¢,c) 5 |V ¢|?|dv, D

solute diffusion. Depending on the value of the Lewis num-

ber (i.e., the ratio of the chemical to the thermal diffusiVity \yheres ande are the local densities of the thermodynamic
the growth process reveals an unsuspected variety of d3é'ntropy and the internal energy, respectively, ahds the

namic regimes. At Le 0 (the isothermal limi, during an  orqer narameter which assumes the val#es0 in the solid
initial transient, the growth is limited by solute diffusion. .4 #=1 in the liquid. The last term in the integrand is a

The interface velocity decreases with time, and the solut@,gient correction which accounts for the thermodynamic
segregation approaches the equilibrium pattern. Then, at

_ " ! : st of the interface. To ensure a positive local entropy pro-
certain valueR™ of the crystal radius, the effective super- gqtion, functionall) is extremized, generating the dynamic

saturation at infinity becomes large enough to drive the progqations for the process. It is convenient to formulate the
cess into a different regime in which the limiting mechanismpromem in nondimensional form, scaling lengths to some

is the finite rate of the atomic attachment. The growth veloc;aterence length¥ and time to¢2/D,, D, being the solute

ity increases abruptly by several orders of magnitude, anfgrsivity in the liquid phase. Then the field equations be-
asymptotically approaches the value found for planar

growth; this stage is characterized by a strong trapping o ome:
solute in the solid phase. ad
At small but finite values of the Lewis number the growth L c)m+cmP][V2¢+(1-c)QA(T, )
rate first decays, as limited by chemical diffusion. The re-
lease of solute ceases to be an obstacle to the interface ad- +cQB(T, 4], (2

vancement when the crystal radius reaches a characteristic
value R*; here we observe the already mentioned abrupt Jc A 5
increase of the interface velocity. But now the finite value of 5 =~ V-{(1=©MAH (S, T)~H (4, T)]V ¢
the thermal diffusivity prevents the evolution of the process
into the kinetic controlled regime, and the growth is limited +c(1-c)A(P)I'(p, T)VT—A(¢p)Vc}, 3
by thermal diffusion. In this high velocity stage the interface
temperature increases with time, and solute is strongly T 1 _ 1 A g dp(®) d¢ 1
trapped into the solid phase. Then, when the interface tem- 5t el X[(l c)L"+cL”] do ot Xp(¢)
perature reaches a value near Thdine (where the Helmoltz
free energies of the liquid and solid are equalsharp tran-
sition again turns the process into a low velocity regime.
This transition was already identified by the auth2@] in a
previous study on planar solidification. The interface tem-where Le is the Lewis number, defined as the ratio Le
perature is now decreasing with time, and the solute segre=D./D+ of the chemical to the thermal diffusivity;*®
gation at the interface approaches the equilibrium pattern. Itepresents the latent heat per unit volume of the component
should be noted that this complex behavior occurs in a reA or B; andy is the specific heat, for which we assume equal
gion of the parameters space which is not accessible to maalues for both components in both phases. The function
tallic alloys. p(¢), defined asp(¢)= ¢3(10—15¢+6¢?), enforces the
With Le values characteristic of metallic alloys, thermal condition that the bulk solid and liquid are described ¢y
effects drive the solidification process into a diffusive regime=0 and 1, respectively, for every value of tempera{®&.
governed by the rejection of solute at the interface, and the We also define:

X(LP-LY, @
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TABLE |. Material parameters for the Ni-Cu Alloy.

Parameter Nickel Copper
Tm(K) 1728 1358
L(J/cnt) 2350 1728
v m(cm®/mole)? 7.0 7.8
a(Jlcnt) 3.7x10°° 2.8x10°°
B(cm/K s)P 128.64 153.60
D,(cn?/s) 10°° 10°°

8An average value of 7.4 will be taken.
PFrom the estimation of Willneckest al. [24].

HA,B((b.T):WA,BM_LA'BU_m dp(¢) T-TAB

d¢ R d¢ TTAE”
6)
£ dg(¢)
QA’B(fﬁ,T):—Wg—QS
1 fZLA'B T_TA,B dp(¢)
6 roe T dp O
Um p(¢)
T(¢,T)=—§—TT(LA—LB), (7)

whereg(¢)= ¢?(1— ¢)?/4 is a symmetric double well po-

tential with equal minima a$=0 and 1;TAB is the melting

temperature of puré or B; Ris the gas constant; ang, is
the molar volume. In Eq(6), B and h*B indicate the
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X107 cm. Using the above values it was found thaf
=0.963, WE=0.960, andn”=m®=350.

Ill. NUMERICAL METHOD

Equations(2)—(4) have been expressed in cylindrical or
spherical coordinates, and solved for the sole spatial variable
r, the radial distance. Initially in the supersaturated melt, at
uniform temperature and concentration andc.,, a solid
germ is nucleated in the region<d <R, with a composi-
tion equal toc,,. The size of the initial radius is the mini-
mum required to avoid remelting and to ensure the succes-
sive growth. To discretize the equations, second order in
space and first order in time finite-difference approximations
were utilized. Then an explicit scheme was employed to ad-
vance the phase field and concentration equations forward in
time; the temperature equation was more conveniently inte-
grated with a fully implicit method. The choice of the com-
putational grid posed some delicate problems. The physical
process involves intrinsic and quite different length scales.
The width of the phase-field and concentration transition
layer, across the interface, is of the order of 10nondimen-
sional unitg; the solute diffusion length, in our simulations,
was in the range I—1C while the thermal diffusion
length reached values as high ag.10he necessity to avoid
finite-size effects and, at the same time, to resolve the phase
and concentration fields accurately, suggested dividing the
computational domain into two parts: an inner region, of
interest for the phase and concentration dynamics, and an
outer region, where only the temperature equation was inte-
grated. In the inner region<Or=<r; the grid spacing was
selected ad\r;=4x10 4, that is half of the nominal inter-

surface tension and the interface thickness of the componenfgce thickess. This value was a standard choice in previous
AandB, respectively[T.. is the initial melt temperature. The studies[9,10,25, where it was proven to ensure accurate

solute diffusivityD, is scaled as

D _ Ds Ds
E—M¢)—D—I+P(¢)(1—D—I), (8)

allowing for different valuesDg and D, in the solid and
liquid phases.

The model parameters?™® and WAB depend on the
physical properties of the alloy components thro(igih]

ﬂA’BO'A’BTA’B

12y o™B ©
_\/5 ﬁ TA,BhA,B!

where 8B is the kinetic undercooling coefficient of pufe
or B, that relates the interface temperattifeto the interface
velocity v throughv = gAB(TAB-T)).

AB_

mAB— AB

solutions of the phase ad concentration equations. In the
outer regionr;<r=r,, we used a nonuniform grid, stretch-
ing the mesh spacing with the lawr,=Ar;+Ar,[1
—exp((r—r;)/ry)]. The values ofAr., andr, were chosen,

for each simulation, to ensure accuracy as well as computa-
tional economy; in any case the temperature field was never
resolved with less thanx410* grid points, and the tempera-
tureadifferences between adjacent grid points never exceeded
10° K.

For the same reason of computational economy, even
along the time axis we used different grids. The concentra-
tion equation(3) requires, for numerical stability, a time step
At which scales asAr)?/D,, whereD,;=1. On the other
hand, the phase-field equatid®) is a diffusion-reaction
equation with diffusivity D ,=m*®=350; in this case the
time step for stabilityAt,, is expected to scale aA()ZlDd,.

To conduct the numerical simulations we referred to theNo stability problems arise for the temperature equation,

phase diagram of an ideal solution of nicksblven} and

which is integrated with an implicit method with a time step

copper(solutg, using the data summarized in Table I; the Aty=At,. Due to the large value dd,, we used a value

solute diffusivity in the solid phase was estimated s
=10 5xD,. The length scale was fixed at=2.1

for At, much smaller thakty=At.. In practice we iterated
the phase-field equation 320 times within a single time step

X 10 * cm; the kinetic undercooling coefficients were fixed (equal to 5<10 ) of the temperature and concentration

to pA=128.64 cms*K ! and B8=153.60 cms'K 1,
not far from the actual best estimatg®4], and a realistic

equations.
The convergence of the numerical scheme was checked

value for the interface thickness was selected as 1.68ccurately in different cases with respect to the refinement of
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10000 and then decreases. This is the expected behavior of a super-
500 critical nucleus, as the driving force for solidificatidthe
supersaturationis contrasted by the release of solute at the
interface, which must be rejected via chemical diffusion.
7500 | 2% Subsequently the solidification front is accelerated until we
observe an abrupt transition: the growth rate increases by
about two orders of magnitude and asymptotically ap-
o A ‘ proaches the value found for a planar interface. The origin of
5000 | this transition can be explained by resorting to a picture of
the process given by the continuous growth model. We recall
that the latter describes the interface kinetics through a dy-
namic phase diagram expressed, for a dilute alloy, by the
equations

interface velocity

2500

m,C

T)(v)=TA+ 1_kle[l—k+(k+(1—k)y)|n(k/ke)]— %
° | ' (10
0.0 0.5 1.0 15
10° t K(v)=

ketuvlvg

1+v/vd ' (11)

FIG. 1. Cylindrical growth: the interface velocity vs time for the wherek, is the equilibrium partition coefficient for a station-

isothermal case. We shofdotted ling the steady interface velocit : . . . .
ol 9 y Y ary interface ke=0.797 in our casg andv is a diffusional

for a planar interface growing with the same conditions at infinity. . LT -

The inset represents an enlarged view of the early stage of th\éeIOCIty for the SOIUte_' _re(_j'smpu“_on ac,ros,S t.he.movmg front.

process. The slope of the equilibrium liquidus line is indicatedras,
and the parametey describes the extent of the dissipation of

the computational grid in both the outer and inner regions/T€€ €nergy due to solute drag across the interface. A previ-

moreover, we checked that using a different time step for th&YS investigatior 10] identified best values af3=290 and
phase-field equation had no influence on the numerical re¥=0-65. To adapt these equations to a curved front of radius
sults. R, the actual melting temperature of the solvent must be

replaced by 26] TA[1— (1/R) (a*/L*)], the equilibrium par-
tition coefficient by k' =k[1— (1/R)(v,o™)/(RTA)], and
the liquidus slope bym/=m;(1—k’)/(1—ke). With these
We fixed T,.=1700 K, corresponding to equilibrium changes, having prescribed the interface temperature, Egs.

concentrations, on the solidus and liquidus lines, resped:10) and(11) can be solved for the,R pair consistently with
tively: ¢ =0.071611 anct} =0.089945; the concentration a kinetic controlled growth. In Fig. 2 we show th€R)

of the melt was set ta,.=c* on the solidus line. We first dependence, as extracted from E¢s0) and (11) (solid
analyze the numerical results for the two-dimensional verdots, compared with the results of the numerical simulation
sion of the model. The most relevant features which charactsolid line). The two curves intersect &*=0.127: this
terize the evolution of the process are shared by cylindricameans that, due to the interface curvatimed the conse-
and spherical growth, so that the extension of our discussiofiuent decrease of the effective supersaturattbe kinetic

to the three-dimensional case will be straightforward. controlled regime is allowed only f&®>R*. Indeed, as we
observe in the graph, this is just the onset of the transition. In

the later evolution of the process the two curves collapse,
indicating that the kinetic regime has been reached. The inset
The initial radius of the germ was chosen Rg=0.04.  of Fig. 2 showscg andc, versus time, i.e., the solute con-
Here and in the following, except for temperature, physicalcentration on the solid and liquid sides of the interface. The
quantities will be expressed in nondimensional units. Thesegregation pattern reflects the time dependence of the so-
initial conditions correspond to a dimensionless supersaturdidification rate: at low velocities the solute redistribution is
tion A=1 for a planar interface but, due to the Gibbs- effective and the concentration gap is high; subsequent to the
Thomson effect, the effective supersaturationis1 for the  abrupt increase of the growth rate, we observe that solute is

IV. NUMERICAL RESULTS

A. Cylindrical growth

solid germ(and, in general, for a convex interface trapped into the solid and the partition coefficient approaches
It is interesting to focus on the process dynamics at fixedunity.
temperature(which is the limit of the model for Le;0). A different picture emerges when the dynamics of the

Figure 1 shows the interface velocity versus time; the dottedhermal field is taken into account, assuming a high but finite
line indicates the value= 7973, which is the steady velocity thermal diffusivity. We setD;=15.5<10’, that is larger
for a planar frontgrowing with the same conditions at infin- than the actual values characteristic of metallic alloys by a
ity. We observe that in a first stageee the expanded portion factor of 1¢; this means Le6.45<10 °. Figure 3 shows

of the graph the growth rate increases, reaches a maximunthe interface velocitysolid line) and temperaturésolid dotg
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o 4000 | g o g 1
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E 50.08 .| =
» c=)
§ 10 t
8007 4
2000 3 «
0.06
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10° ¢
. 1 s e vl 06
0 ' ' ' ' 10° 10* 10% 107 10"
0.0 0.2 0.4 0.6 0.8 1.0 .
time

radius of the crystal o _ _
FIG. 4. Cylindrical growth: the solute concentration on the solid

FIG. 2. Cylindrical growth: the interface velocity vs the crystal Side(dots and liquid side(triangles of the interface vs time. The
radius for the isothermal case. Solid line: the results of the preseritolid line represents the interface velocity. The Lewis number is
simulation. Solid dots: the solution of Eq4.0) and(11). The inset  Le=6.45<10"°.
represents the solute concentration at the interface vs time. . .

the maximum ofT, is 1701.9 K whenv=1225; then the
versus time. The growth rate first decays, as limited b))'nterface s sudden!y decelerated, a_nd anew trangition again
chemical diffusion; in this stage the interface temperaturéums. Fhe process into a Io_vx_/ velocity regime. _Th|s second
shows a slow increase. When the release of solute ceasesfgns/tion was already |dent|f|¢q bY the autli20] in a pre-
be an obstacle to the interface advancement, we observe tf&YS study on pllanar solidification, and was explamgd
above mentioned abrupt acceleration of the solidificatior} rough an analysis based on the comparison of the time
front. But now, due to the finite value of the thermal diffu- S.Ca'es for ';hermal zzand chemical diffusion. Itwas argued t_hat,
sivity the interface warms up and the growth rate decrease%mceDC/v <Dy /v7, the phase and solute fields evolve with

limited by th | diffusion. In this high velocity st a (quasisteadydynamics slaved by the local interface ther-
as fimrted by thermal diifusion. in tms high veloctly stage mal conditions. As thd(v) curve resulting from Eqg10)

and(11) is a nonmonotonic function, both low and high ve-
locity states are accessible to the growth process, and the
sharp interface deceleration corresponds to the transition of
the operating point from the high velocity branch to the low
velocity branch. It is worth noting that sharp transitions be-
tween the high and low velocity branches of thév) curve
were also observed in the dynamics of the banding phenom-
ena[18,27,28, and were ascribed to the same mechanism.
The complex behavior of the process dynamics reflects on
the solute segregation at the moving front. Figure 4 shows,
cs and ¢, versus time, i.e. the solute concentration on the
solid side(dot9 and liquid side(triangles of the interface.

For clarity, on the same graph we superimposed a curve
representing the interface velocitsolid line). The large con-
centration gap which characterizes the first stage of the pro-
cess is suddenly closed at the first transition when, due to the

10000 g 1704

1000 |

100 } 1702

interface velocity
(3] amereduis) aoe)Ia)ul

10

; high growth rate, the solute segregation is suppressed. Then
1 L .....m———.-ﬁ v el 1709 the interface velocity decreases and solute partition again
10° 10* 10° 102 10" becomes effective; this corresponds to an increase of the sol-

ute concentration in the liquid. At a second sharp transition
(toward the low velocity regimewe observe that the con-
FIG. 3. Cylindrical growth: the interface velocitisolid line) centration gap is suddenly restored. The sharp transients
and temperaturésolid dot3 vs time. The Lewis number is Le which characterize the growth process leave a trace in the
=6.45x<107°, solidified alloy. In Fig. 5 we see the solute profile tat

time
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FIG. 5. Cylindrical growth: the concentration profile with Le ~ FIG. 6. Cylindrical growth: the interface velocityriangles and
=6.45x 109, at timet=10"1. The arrows(@ and(b) indicate the temperature(dots vs time. Le=6.45<1075. The straight line is
effects of the sharp variations of the growth rate. representative of the power lawt V2. The inset shows the solute

concentration on the solidlower curve and liquid side(upper

=101 we observe a positive pedk) at R* =0.25, which curve of the interface.

keeps the memory of the sudden incorporation into the solid., . . N
of the solute excess at the first transition; the subsequeqih'S grap_h_ should be compared_ W'th the curves in Fig. 3.
negative peakb) reflects the depletion of solute on the solid he*tran5|t|o[13to t*he thermal [(gg}me Is retarded, and oceurs
side of the interface at the second transition. att*~5x10 = (t Nl'25>< 10 in two dimensions W? .

The above results show the rich variety of dynamic re_srlould note that the radius of the crysial at the transition is
gimes accessible to the solidification process in some regions .~ 0'.5' that is exactly twice the Val@ =0.25 found for
of the parameters space. However, a simpler behavior aris é/l[ndncal growth. The further evolution of the. process ex-
for more realistic values of the thermal diffusivity. In Fig. 6 _|b|ts.the same qua!ltatwe features obs_erve_d in two dimen-
we show the data obtained with a larger value of the LewiSions: the interface is slowed down until, with a strong de-
number, Le=6.45x 10 °, typical of metallic alloys. In this
case the rejection of heat becomes less effective and the in-
terface warms up. According to Eq4.0) and(11) the kinetic
regime is prevented fof,>1702 K. We observe that the
interface temperature evolves well beyond this value; then
the process enters a diffusive regime governed by the rejec- 1000 ¢
tion of solute, and the growth rate approaches the power law F
«t~ Y2 These data show that for rapid alloy solidification the ! 1
finite rate of heat rejection cannot be neglected, as it is pre- \J

100 F 4 1702

wards equilibrium is also displayed through the inset in Fig. [
6, where we see that the concentration gap at the interface
C,—Cs increases with time, approaching asymptotically the 10 k
equilibrium value. ;

10000 g 1704

cisely this effect which determines the main qualitative char-
acteristics of the growth. The relaxation of the process to-

interface velocity

(3] amereduis) aoe)Ia)ul

B. Spherical growth [ )
1 3t 2 T21Y Liiagl L L aiaial L (I EEET] 1700

In this case curvature effects are still persistent at a later 10° 10* 10° 10? 10"
stage of the crystal growth, as the curvature of a sphere is )
twice the one of a cylinder of the same radius. To prevent tme
remelting we had to fix the initial radius of the germ Rg FIG. 7. Spherical growth: the interface velocisolid line) and

=0.08. Figure 7 shows the interface velodigplid line) and  temperatureg(solid dot$ vs time. The Lewis number is ze6.45
temperature(solid dot$ versus time, for Le6.45<10 °. X109,
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FIG. 8. Spherical growth: the solute concentration on the solid FIG. 9. Spherical growth: the interface velocityiangles and
side (dot and liquid side(triangles of the interface vs time. The temperature(dots vs time. Le=6.45x 10 5. The straight line is
solid line represents the interface velocity. The Lewis number igepresentative of the power lawt ™2
Le=6.45x10"°.

V. CONCLUSIONS

celeration, the low velocity branch is reached. Figure 8 The cylindrical or spherical solidification of binary alloys
shows the time dependenceafandc;, ; the interface veloc- is generally addressed in the isothermal limit, and resorting
ity is also represented on the graph. Here too the solute cone the quasistatic approximation. At large supersaturation
centration at the interface reflects the complex dynamics othis approach is not adequate, and the problem must be
the growth rate. We see the sudden suppression of the solutieeated in its full time-dependent characteristics, accounting
segregation subsequent to the transition to the thermal rder both heat and solute diffusion. From this perspective, the
gime; the concentration gap is then restored when the lovinterface dynamics reveals a rich variety of growth regimes.
velocity branch is reached. It should be mentioned that thét low values of the Lewis number, in the late stage the
solute profile in the solidified alloy shows the same characgrowth is controlled either by the interface kinetigs the
teristics we observed in the two dimensional case. limit Le=0) or by thermal diffusior(for Le# 0). However,
Figure 9 shows the data obtained with=6.45<107°.  this behavior is not accessible to experimental observation,
As can be observed, the growth rate asymptotically apas it assumes too fast a heat rejection. At realistic values of
proaches thevot™ %2 power law, whileT, saturates to a the Lewis number the interface warms up, and the process
value slightly below 1701 K. We checked that in tRev enters a regime in which the rate limiting mechanism is the
plane the trajectory described by the process lies all the timdiffusion of solute. It is interesting to note that, even for
below the curve extracted from Eg€l0) and (11), never  metallic alloys(in which heat transport is much faster than
intersecting it; this means that in this case a transition to theolute transpojt neglecting the finite rate of thermal diffu-
thermal regime is not allowed, and the growth rate is consion dramatically changes the picture of the solidification

trolled by chemical diffusion. process.

[1] J.S. Langer, Rev. Mod. Phys2, 1 (1980. [10] M. Conti, Phys. Rev. 56, 3717(1997.

[2] M.J. Aziz, J. Appl. Phys53, 1158(1982. [11] N.A. Ahmad, A.A. Wheeler, W.J. Boettinger, and G.B. Mc-

[3] M.J. Aziz and T. Kaplan, Acta MetalB6, 2335(1988. Fadden, Phys. Rev. &8, 3436(1998.

[4] M.J. Aziz and W.J. Boettinger, Acta Metall2, 527 (1994). [12] Zhigiang Bi and Robert F. Sekerka, Physic2&1, 95(1998.

[5] G. Caginalp and W. Xie, Phys. Rev.48, 1897(1993. [13] D.A. Kessler, J. Koplik, and H. Levine, Adv. Phy37, 225

[6] G. Caginalp and J. Jones, Ann. PhyN.Y.) 237, 66 (1995. (1988.

[7] A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phys.[14] W. Kurz and D. J. FisherFundamentals of Solidification
Rev. A45, 7424(1992. (Trans Tech, Aedermannsdorf, 1992

[8] A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phys.[15] S. R. Coriell and G. B. McFadden, iHandbook of Crystal
Rev. E47, 1893(1993. Growth, edited by D.T.J. HurléElsevier, Amsterdam, 1993

[9] M. Conti, Phys. Rev. 55, 701 (1997. [16] B. Caroli, C. Caroli, and B. Roulet, i8olids Far from Equi-

041507-7



MASSIMO CONTI PHYSICAL REVIEW E 63 041507

librium, edited by C. Godrech&€ambridge University Press, [23] S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R.

Cambridge, 1992 Coriell, R.J. Braun, and G.B. McFadden, Physic&6® 189
[17] W.W. Mullins and R.F. Sekerka, J. Appl. Phy85, 444 (1993.
(1964). [24] R. Willnecker, D.M. Herlach, and B. Feuerbacher, Phys. Rev.
[18] A. Karma and A. Sarkissian, Phys. Rev. Le@8, 2616 Lett. 62, 2707(1989.
(1992. [25] M. Conti, Phys. Rev. B5, 765 (1997).
[19] A. Karma and A. Sarkissian, Phys. Rev4E, 513 (1993. [26] M. C. Flemings Solidification ProcessingMicGraw-Hill, New
[20] M. Conti, Phys. Rev. 61, 642 (2000. York, 1974.
[21] J.A. Warren and W.J. Boettinger, Acta Metall. Maté8, 689 [27] M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz,
(1995. Acta Metall. Mater.40, 983 (1992.
[22] M. Conti, Phys. Rev. 8, 6166(1998. [28] M. Conti, J. Cryst. GrowtH 98199, 1251(1999.

041507-8



