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Curvature effects in rapid alloy solidification
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The growth of a cylindrical or spherical crystal into its undercooled melt is a process whose description is
complicated by the lack of a stationary regime. A simple approach to the problem, justified for low growth
rates and widely used in the past for both pure substances and alloy solidification, is based on a quasistatic
approximation which assumes an instantaneous adaptation of the diffusional field to the interface configuration.
For alloy solidification, assuming isothermal conditions and local interface equilibrium, this simplified model
predicts a diffusion controlled growth, with the radius of the crystal increasing asymptotically as}t1/2. How-
ever, as pointed out by recent investigations, thermal diffusion and nonequilibrium effects enter as essential
ingredients in rapid alloy solidification. In the present paper we use the phase-field model to simulate the
cylindrical and spherical growth of a solid germ into a supersaturated alloy melt. The problem is treated in its
full time-dependent characteristics, accounting for nonequilibrium effects as well as for the rejection of both
heat and solute away from the advancing front. We observe a complex behavior and a rich variety of dynamic
regimes: in different regions of parameter space the growth rate is limited by diffusion~either thermal or
chemical! or is kinetic controlled. Traversing the boundaries which limit these regions, the process undergoes
sharp transitions which leave a trace in the solidified alloy. For realistic values of the Lewis number, thermal
effects drive the process into a a diffusive regime, in which the rate limiting mechanism is the rejection of
solute.

DOI: 10.1103/PhysRevE.63.041507 PACS number~s!: 64.70.Dv, 81.15.Lm, 81.30.Bx, 68.35.Md
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I. INTRODUCTION

In rapid solidification of binary alloys the growth rate
controlled by the diffusive transport of both heat and sol
away from the advancing front. A classical~sharp interface!
description of the process couples the diffusion equation
the bulk phases with interfacial boundary conditions. T
latter consist of two different constraints:~a! energy and sol-
ute conservation across the moving front, and~b! constitutive
laws which relate the concentrationc and temperatureT at
the interface to the front velocityv. As the relaxation of the
thermal field is much faster than the rearrangement of che
cal species, the process is often treated as isothermal. In
limit Langer @1# pointed out that, assuming local interfaci
equilibrium, and considering the chemical potential rath
than the concentration field, the model for alloy solidificati
is reduced to the same set of governing equations wh
describe the solidification of a pure substance. However
large growth rates nonequilibrium effects become domina
the solid-liquid front requires a large undercooling to a
vance, and the partition coefficientk ~i.e., the ratiocs /cl of
solute concentration in the growing solid to that in the liqu
at the interface! increases from the equilibrium valueke to-
ward unity, reflecting the trapping of solute into the so
phase. These phenomena were addressed in several s
by Aziz and co-workers@2–4# through the continuous
growth model. Starting from a mesoscopic analysis of
diffusive processes within the interfacial boundary lay
they were able to derive a dynamic phase diagram, show
that the interface temperature is a nonmonotonic function
the growth rate.

A diffuse interface approach to study alloy solidificatio
is based on the phase-field model~PFM!. A phase field
1063-651X/2001/63~4!/041507~8!/$20.00 63 0415
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f(x,t) characterizes the phase of the system at each poi
free-energy~or entropy! functional, depending onf,T, and
c, as well as on their gradients, is then extremized in resp
to these variables, to derive the dynamic equations for
process. Several theoretical and numerical studies@5–12#
pointed out that the PFM describes, in a natural fashi
nonequilibrium effects like solute trapping and the kine
undercooling of the solid-liquid interface.

Employing these models, alloy solidification has be
studied in different regimes, generally neglecting the dif
sion of the thermal field. Much attention has been devoted
the dynamics and instabilities of a planar interface grow
either in an adverse temperature gradient or into a supers
rated melt~see Refs.@13–15# for a review!. In the latter case
it is always possible, choosing proper conditions at infini
to find a stationary regime in which the solid grows at
constant velocity.

A different picture arises when cylindrical~or spherical!
growth is considered, as in this case the process canno
stationary. The evolution of the interface dynamics, in t
isothermal limit, can be addressed within the quasistatic
proximation: the time-dependent diffusion equation is
placed by the Laplace’s equation which satisfies all
boundary conditions except the solute conservation at
moving front; the latter is then utilized to determine the i
terface velocity. Assuming local interfacial equilibrium, th
solution of this simplified model shows that the growth
limited by solute diffusion@16#; as the radiusR of the crystal
increases~and curvature effects become negligible!, the well
known R}t1/2 power law is asymptotically approached. Th
stability of the spherical solution against small deformatio
of the solid germ was treated by Mullins and Sekerka;
their seminal paper@17# they found that the spherical nucleu
©2001 The American Physical Society07-1
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MASSIMO CONTI PHYSICAL REVIEW E 63 041507
begins to deform when its radius exceeds a critical va
which is just seven times the nucleation radius.

The quasistatic approximation, which assumes an ins
taneous adaptation of the diffusive field to the actual int
face configuration, is justified only at low growth rates.
large values of the dimensionless supersaturationD5(cl*
2c`)/(cl* 2cs* ) ~wherec` represents the initial solute con
centration of the melt andcl* and cs* are the equilibrium
solute concentrations in the liquid and solid phases, res
tively!, the problem should be treated in its full time
dependent characteristics and taking into account nonequ
rium effects. Moreover recent investigations pointed out t
thermal diffusion enters as an essential ingredient into
evolution of the phase-change process@18–20#.

In the present paper the cylindrical or spherical growth
a solid germ is simulated with the phase-field model. T
study is conducted in one dimension, so that the morphol
cal instabilities of the solid-liquid interface are beyond t
scope of our analysis. We focus on the dynamics of the p
cess at large supersaturation accounting, for both therma
solute diffusion. Depending on the value of the Lewis nu
ber ~i.e., the ratio of the chemical to the thermal diffusivity!,
the growth process reveals an unsuspected variety of
namic regimes. At Le50 ~the isothermal limit!, during an
initial transient, the growth is limited by solute diffusion
The interface velocity decreases with time, and the so
segregation approaches the equilibrium pattern. Then,
certain valueR* of the crystal radius, the effective supe
saturation at infinity becomes large enough to drive the p
cess into a different regime in which the limiting mechanis
is the finite rate of the atomic attachment. The growth vel
ity increases abruptly by several orders of magnitude,
asymptotically approaches the value found for pla
growth; this stage is characterized by a strong trapping
solute in the solid phase.

At small but finite values of the Lewis number the grow
rate first decays, as limited by chemical diffusion. The
lease of solute ceases to be an obstacle to the interface
vancement when the crystal radius reaches a characte
value R* ; here we observe the already mentioned abr
increase of the interface velocity. But now the finite value
the thermal diffusivity prevents the evolution of the proce
into the kinetic controlled regime, and the growth is limite
by thermal diffusion. In this high velocity stage the interfa
temperature increases with time, and solute is stron
trapped into the solid phase. Then, when the interface t
perature reaches a value near theT0 line ~where the Helmoltz
free energies of the liquid and solid are equal!, a sharp tran-
sition again turns the process into a low velocity regim
This transition was already identified by the author@20# in a
previous study on planar solidification. The interface te
perature is now decreasing with time, and the solute se
gation at the interface approaches the equilibrium pattern
should be noted that this complex behavior occurs in a
gion of the parameters space which is not accessible to
tallic alloys.

With Le values characteristic of metallic alloys, therm
effects drive the solidification process into a diffusive regim
governed by the rejection of solute at the interface, and
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front velocity decays with time, asymptotically approachi
the v}t21/2 power law.

The paper is organized as follows: in Sec. II the gove
ing equations of the model will be derived, through the e
tremization of an entropy functional. In Sec. III the nume
cal method will be explained, and in Sec. IV the results
the numerical simulations will be discussed. The conclusi
will follow in Sec. V.

II. GOVERNING EQUATIONS

The model follows the formulation given by Warren an
Boettinger@21# and also incorporates many of the ideas d
veloped by Caginalp and Xie@5#, Caginalp and Jones@6#,
and Wheeleret al. @7,8#. Full details of the derivation are
presented elsewhere@22#, and will not repeated here.

The entropy of an ideal solution of componentsA ~sol-
vent! andB ~solute! is written as

S5E Fs~e,f,c!2
e2

2
u“fu2Gdv, ~1!

wheres and e are the local densities of the thermodynam
entropy and the internal energy, respectively, andf is the
order parameter which assumes the valuesf50 in the solid
and f51 in the liquid. The last term in the integrand is
gradient correction which accounts for the thermodynam
cost of the interface. To ensure a positive local entropy p
duction, functional~1! is extremized, generating the dynam
equations for the process. It is convenient to formulate
problem in nondimensional form, scaling lengths to so
reference lengthj and time toj2/Dl , Dl being the solute
diffusivity in the liquid phase. Then the field equations b
come:

]f

]t
5@~12c!mA1cmB#@“2f1~12c!QA~T,f!

1cQB~T,f!#, ~2!

]c

]t
52“•$c~12c!l~f!@HA~f,T!2HB~f,T!#“f

1c~12c!l~f!G~f,T!“T2l~f!“c%, ~3!

]T

]t
5

1

Le
“

2T2
1

x
@~12c!LA1cLB#

dp~f!

df

]f

]t
2

1

x
p~f!

3~LB2LA!
]c

]t
, ~4!

where Le is the Lewis number, defined as the ratio
5Dc /DT of the chemical to the thermal diffusivity;LA,B

represents the latent heat per unit volume of the compon
A or B; andx is the specific heat, for which we assume equ
values for both components in both phases. The func
p(f), defined asp(f)5f3(10215f16f2), enforces the
condition that the bulk solid and liquid are described byf
50 and 1, respectively, for every value of temperature@23#.

We also define:
7-2
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CURVATURE EFFECTS IN RAPID ALLOY SOLIDIFICATION PHYSICAL REVIEW E63 041507
HA,B~f,T!5WA,B
dg~f!

df
2LA,B

vm

R̄

dp~f!

df

T2TA,B

TTA,B ,

~5!

QA,B~f,T!52
j2

~hA,B!2

dg~f!

df

1
1

6A2

j2LA,B

sA,BhA,B

T2TA,B

T`

dp~f!

df
, ~6!

G~f,T!52
vm

R̄

p~f!

T2 ~LA2LB!, ~7!

whereg(f)5f2(12f)2/4 is a symmetric double well po
tential with equal minima atf50 and 1;TA,B is the melting
temperature of pureA or B; R̄ is the gas constant; andvm is
the molar volume. In Eq.~6!, sA,B and hA,B indicate the
surface tension and the interface thickness of the compon
A andB, respectively;T` is the initial melt temperature. Th
solute diffusivityDc is scaled as

Dc

Dl
5l~f!5

Ds

Dl
1p~f!S 12

Ds

Dl
D , ~8!

allowing for different valuesDs and Dl in the solid and
liquid phases.

The model parametersmA,B and WA,B depend on the
physical properties of the alloy components through@21#

mA,B5
bA,BsA,BTA,B

DlL
A,B , WA,B5

12

A2

vm

R̄

sA,B

TA,BhA,B , ~9!

wherebA,B is the kinetic undercooling coefficient of pureA
or B, that relates the interface temperatureTI to the interface
velocity v throughv5bA,B(TA,B2TI).

To conduct the numerical simulations we referred to
phase diagram of an ideal solution of nickel~solvent! and
copper~solute!, using the data summarized in Table I; th
solute diffusivity in the solid phase was estimated asDs
510263Dl . The length scale was fixed atj52.1
31024 cm; the kinetic undercooling coefficients were fixe
to bA5128.64 cm s21 K21 and bB5153.60 cm s21 K21,
not far from the actual best estimates@24#, and a realistic
value for the interface thickness was selected as 1

TABLE I. Material parameters for the Ni-Cu Alloy.

Parameter Nickel Copper

Tm(K) 1728 1358
L(J/cm3) 2350 1728
vm(cm3/mole)a 7.0 7.8
s(J/cm2) 3.731025 2.831025

b(cm/K s)b 128.64 153.60
Dl(cm2/s) 1025 1025

aAn average value of 7.4 will be taken.
bFrom the estimation of Willneckeret al. @24#.
04150
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31027 cm. Using the above values it was found thatWA

50.963,WB50.960, andmA5mB5350.

III. NUMERICAL METHOD

Equations~2!–~4! have been expressed in cylindrical
spherical coordinates, and solved for the sole spatial varia
r, the radial distance. Initially in the supersaturated melt
uniform temperature and concentrationT` and c` , a solid
germ is nucleated in the region 0<r<R0, with a composi-
tion equal toc` . The size of the initial radius is the mini
mum required to avoid remelting and to ensure the succ
sive growth. To discretize the equations, second orde
space and first order in time finite-difference approximatio
were utilized. Then an explicit scheme was employed to
vance the phase field and concentration equations forwar
time; the temperature equation was more conveniently in
grated with a fully implicit method. The choice of the com
putational grid posed some delicate problems. The phys
process involves intrinsic and quite different length scal
The width of the phase-field and concentration transit
layer, across the interface, is of the order of 1023 ~nondimen-
sional units!; the solute diffusion length, in our simulation
was in the range 1022–100 while the thermal diffusion
length reached values as high as 104. The necessity to avoid
finite-size effects and, at the same time, to resolve the ph
and concentration fields accurately, suggested dividing
computational domain into two parts: an inner region,
interest for the phase and concentration dynamics, and
outer region, where only the temperature equation was i
grated. In the inner region 0<r<r i the grid spacing was
selected asDr i5431024, that is half of the nominal inter-
face thickess. This value was a standard choice in prev
studies@9,10,25#, where it was proven to ensure accura
solutions of the phase ad concentration equations. In
outer regionr i<r<r o , we used a nonuniform grid, stretch
ing the mesh spacing with the lawDr o5Dr i1Dr `@1
2exp„(r 2r i)/r L…#. The values ofDr ` and r L were chosen,
for each simulation, to ensure accuracy as well as comp
tional economy; in any case the temperature field was ne
resolved with less than 43104 grid points, and the tempera
ture differences between adjacent grid points never excee
1023 K.

For the same reason of computational economy, e
along the time axis we used different grids. The concen
tion equation~3! requires, for numerical stability, a time ste
Dtc which scales as (Dr )2/Dl , whereDl51. On the other
hand, the phase-field equation~2! is a diffusion-reaction
equation with diffusivityDf5mA,B5350; in this case the
time step for stabilityDtf is expected to scale as (Dr )2/Df .
No stability problems arise for the temperature equati
which is integrated with an implicit method with a time ste
DtT5Dtc . Due to the large value ofDf , we used a value
for Dtf much smaller thanDtT5Dtc . In practice we iterated
the phase-field equation 320 times within a single time s
~equal to 531028! of the temperature and concentratio
equations.

The convergence of the numerical scheme was chec
accurately in different cases with respect to the refinemen
7-3
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MASSIMO CONTI PHYSICAL REVIEW E 63 041507
the computational grid in both the outer and inner regio
moreover, we checked that using a different time step for
phase-field equation had no influence on the numerical
sults.

IV. NUMERICAL RESULTS

We fixed T`51700 K, corresponding to equilibrium
concentrations, on the solidus and liquidus lines, resp
tively: cs* 50.071611 andcl* 50.089945; the concentratio
of the melt was set toc`5cs* on the solidus line. We firs
analyze the numerical results for the two-dimensional v
sion of the model. The most relevant features which cha
terize the evolution of the process are shared by cylindr
and spherical growth, so that the extension of our discus
to the three-dimensional case will be straightforward.

A. Cylindrical growth

The initial radius of the germ was chosen asR050.04.
Here and in the following, except for temperature, physi
quantities will be expressed in nondimensional units. T
initial conditions correspond to a dimensionless supersat
tion D51 for a planar interface but, due to the Gibb
Thomson effect, the effective supersaturation isD,1 for the
solid germ~and, in general, for a convex interface!.

It is interesting to focus on the process dynamics at fix
temperature~which is the limit of the model for Le→0).
Figure 1 shows the interface velocity versus time; the do
line indicates the valuev57973, which is the steady velocit
for a planar frontgrowing with the same conditions at infin
ity. We observe that in a first stage~see the expanded portio
of the graph! the growth rate increases, reaches a maxim

FIG. 1. Cylindrical growth: the interface velocity vs time for th
isothermal case. We show~dotted line! the steady interface velocity
for a planar interface growing with the same conditions at infin
The inset represents an enlarged view of the early stage of
process.
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and then decreases. This is the expected behavior of a su
critical nucleus, as the driving force for solidification~the
supersaturation! is contrasted by the release of solute at t
interface, which must be rejected via chemical diffusio
Subsequently the solidification front is accelerated until
observe an abrupt transition: the growth rate increases
about two orders of magnitude and asymptotically a
proaches the value found for a planar interface. The origin
this transition can be explained by resorting to a picture
the process given by the continuous growth model. We re
that the latter describes the interface kinetics through a
namic phase diagram expressed, for a dilute alloy, by
equations

TI~v !5TA1
mlcl

12ke
@12k1„k1~12k!g…ln~k/ke!#2

v
bA ,

~10!

k~v !5
ke1v/vd

11v/vd
, ~11!

whereke is the equilibrium partition coefficient for a station
ary interface (ke50.797 in our case!, andvd is a diffusional
velocity for the solute redistribution across the moving fro
The slope of the equilibrium liquidus line is indicated asml ,
and the parameterg describes the extent of the dissipation
free energy due to solute drag across the interface. A pr
ous investigation@10# identified best values ofvd5290 and
g50.65. To adapt these equations to a curved front of rad
R, the actual melting temperature of the solvent must
replaced by@26# TA@12(1/R)(sA/LA)#, the equilibrium par-
tition coefficient by k85ke@12(1/R)(vmsA)/(R̄TA)#, and
the liquidus slope byml85ml(12k8)/(12ke). With these
changes, having prescribed the interface temperature,
~10! and~11! can be solved for thev,R pair consistently with
a kinetic controlled growth. In Fig. 2 we show thev(R)
dependence, as extracted from Eqs.~10! and ~11! ~solid
dots!, compared with the results of the numerical simulati
~solid line!. The two curves intersect atR* 50.127: this
means that, due to the interface curvature~and the conse-
quent decrease of the effective supersaturation! the kinetic
controlled regime is allowed only forR.R* . Indeed, as we
observe in the graph, this is just the onset of the transition
the later evolution of the process the two curves collap
indicating that the kinetic regime has been reached. The i
of Fig. 2 showscs and cl versus time, i.e., the solute con
centration on the solid and liquid sides of the interface. T
segregation pattern reflects the time dependence of the
lidification rate: at low velocities the solute redistribution
effective and the concentration gap is high; subsequent to
abrupt increase of the growth rate, we observe that solut
trapped into the solid and the partition coefficient approac
unity.

A different picture emerges when the dynamics of t
thermal field is taken into account, assuming a high but fin
thermal diffusivity. We setDT515.53107, that is larger
than the actual values characteristic of metallic alloys b
factor of 104; this means Le56.4531029. Figure 3 shows
the interface velocity~solid line! and temperature~solid dots!

.
he
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CURVATURE EFFECTS IN RAPID ALLOY SOLIDIFICATION PHYSICAL REVIEW E63 041507
versus time. The growth rate first decays, as limited
chemical diffusion; in this stage the interface temperat
shows a slow increase. When the release of solute ceas
be an obstacle to the interface advancement, we observ
above mentioned abrupt acceleration of the solidificat
front. But now, due to the finite value of the thermal diff
sivity the interface warms up and the growth rate decrea
as limited by thermal diffusion. In this high velocity stag

FIG. 2. Cylindrical growth: the interface velocity vs the cryst
radius for the isothermal case. Solid line: the results of the pre
simulation. Solid dots: the solution of Eqs.~10! and~11!. The inset
represents the solute concentration at the interface vs time.

FIG. 3. Cylindrical growth: the interface velocity~solid line!
and temperature~solid dots! vs time. The Lewis number is Le
56.4531029.
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the maximum ofTI is 1701.9 K whenv51225; then the
interface is suddenly decelerated, and a new transition a
turns the process into a low velocity regime. This seco
transition was already identified by the author@20# in a pre-
vious study on planar solidification, and was explain
through an analysis based on the comparison of the t
scales for thermal and chemical diffusion. It was argued th
sinceDc /v2!DT /v2, the phase and solute fields evolve wi
a ~quasisteady! dynamics slaved by the local interface the
mal conditions. As theTI(v) curve resulting from Eqs.~10!
and~11! is a nonmonotonic function, both low and high v
locity states are accessible to the growth process, and
sharp interface deceleration corresponds to the transitio
the operating point from the high velocity branch to the lo
velocity branch. It is worth noting that sharp transitions b
tween the high and low velocity branches of theTI(v) curve
were also observed in the dynamics of the banding phen
ena @18,27,28#, and were ascribed to the same mechanis
The complex behavior of the process dynamics reflects
the solute segregation at the moving front. Figure 4 sho
cs and cl versus time, i.e. the solute concentration on t
solid side~dots! and liquid side~triangles! of the interface.
For clarity, on the same graph we superimposed a cu
representing the interface velocity~solid line!. The large con-
centration gap which characterizes the first stage of the
cess is suddenly closed at the first transition when, due to
high growth rate, the solute segregation is suppressed. T
the interface velocity decreases and solute partition ag
becomes effective; this corresponds to an increase of the
ute concentration in the liquid. At a second sharp transit
~toward the low velocity regime! we observe that the con
centration gap is suddenly restored. The sharp transi
which characterize the growth process leave a trace in
solidified alloy. In Fig. 5 we see the solute profile att

nt

FIG. 4. Cylindrical growth: the solute concentration on the so
side ~dots! and liquid side~triangles! of the interface vs time. The
solid line represents the interface velocity. The Lewis numbe
Le56.4531029.
7-5
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MASSIMO CONTI PHYSICAL REVIEW E 63 041507
51021: we observe a positive peak~a! at R* 50.25, which
keeps the memory of the sudden incorporation into the s
of the solute excess at the first transition; the subseq
negative peak~b! reflects the depletion of solute on the so
side of the interface at the second transition.

The above results show the rich variety of dynamic
gimes accessible to the solidification process in some reg
of the parameters space. However, a simpler behavior a
for more realistic values of the thermal diffusivity. In Fig.
we show the data obtained with a larger value of the Le
number, Le56.4531025, typical of metallic alloys. In this
case the rejection of heat becomes less effective and th
terface warms up. According to Eqs.~10! and~11! the kinetic
regime is prevented forTI.1702 K. We observe that th
interface temperature evolves well beyond this value; t
the process enters a diffusive regime governed by the re
tion of solute, and the growth rate approaches the power
}t21/2. These data show that for rapid alloy solidification t
finite rate of heat rejection cannot be neglected, as it is p
cisely this effect which determines the main qualitative ch
acteristics of the growth. The relaxation of the process
wards equilibrium is also displayed through the inset in F
6, where we see that the concentration gap at the inter
cl2cs increases with time, approaching asymptotically t
equilibrium value.

B. Spherical growth

In this case curvature effects are still persistent at a l
stage of the crystal growth, as the curvature of a spher
twice the one of a cylinder of the same radius. To prev
remelting we had to fix the initial radius of the germ asR0
50.08. Figure 7 shows the interface velocity~solid line! and
temperature~solid dots! versus time, for Le56.4531029.

FIG. 5. Cylindrical growth: the concentration profile with L
56.4531029, at timet51021. The arrows~a! and~b! indicate the
effects of the sharp variations of the growth rate.
04150
id
nt

-
ns
es

s

in-

n
c-
w

e-
-
-
.
ce
e

er
is
t

This graph should be compared with the curves in Fig.
The transition to the thermal regime is retarded, and occ
at t* ;531023 (t* ;1.2531023 in two dimensions!. We
should note that the radius of the crystal at the transition
R* 50.5, that is exactly twice the valueR* 50.25 found for
cylindrical growth. The further evolution of the process e
hibits the same qualitative features observed in two dim
sions: the interface is slowed down until, with a strong d

FIG. 6. Cylindrical growth: the interface velocity~triangles! and
temperature~dots! vs time. Le56.4531025. The straight line is
representative of the power law}t21/2. The inset shows the solut
concentration on the solid~lower curve! and liquid side~upper
curve! of the interface.

FIG. 7. Spherical growth: the interface velocity~solid line! and
temperature~solid dots! vs time. The Lewis number is Le56.45
31029.
7-6
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celeration, the low velocity branch is reached. Figure
shows the time dependence ofcs andcl ; the interface veloc-
ity is also represented on the graph. Here too the solute
centration at the interface reflects the complex dynamics
the growth rate. We see the sudden suppression of the s
segregation subsequent to the transition to the therma
gime; the concentration gap is then restored when the
velocity branch is reached. It should be mentioned that
solute profile in the solidified alloy shows the same char
teristics we observed in the two dimensional case.

Figure 9 shows the data obtained with Le56.4531025.
As can be observed, the growth rate asymptotically
proaches thev}t21/2 power law, whileTI saturates to a
value slightly below 1701 K. We checked that in theR,v
plane the trajectory described by the process lies all the t
below the curve extracted from Eqs.~10! and ~11!, never
intersecting it; this means that in this case a transition to
thermal regime is not allowed, and the growth rate is c
trolled by chemical diffusion.

FIG. 8. Spherical growth: the solute concentration on the s
side ~dots! and liquid side~triangles! of the interface vs time. The
solid line represents the interface velocity. The Lewis numbe
Le56.4531029.
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V. CONCLUSIONS

The cylindrical or spherical solidification of binary alloy
is generally addressed in the isothermal limit, and resort
to the quasistatic approximation. At large supersaturat
this approach is not adequate, and the problem mus
treated in its full time-dependent characteristics, accoun
for both heat and solute diffusion. From this perspective,
interface dynamics reveals a rich variety of growth regim
At low values of the Lewis number, in the late stage t
growth is controlled either by the interface kinetics~in the
limit Le50) or by thermal diffusion~for LeÞ0). However,
this behavior is not accessible to experimental observat
as it assumes too fast a heat rejection. At realistic value
the Lewis number the interface warms up, and the proc
enters a regime in which the rate limiting mechanism is
diffusion of solute. It is interesting to note that, even f
metallic alloys~in which heat transport is much faster tha
solute transport!, neglecting the finite rate of thermal diffu
sion dramatically changes the picture of the solidificati
process.

d

s

FIG. 9. Spherical growth: the interface velocity~triangles! and
temperature~dots! vs time. Le56.4531025. The straight line is
representative of the power law}t21/2.
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